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Abstract                                       

The possibility to study such fundamental notions of modern mathematics as “space” and “spatial transformation” is 

almost absent in educational software. Instead, this software handles affine transformations of objects lying in 2D or 

3D space: specifically, compositions of rotations, translations and homothety, all applied to geometric figure.   

It is relatively easy to implement affine transformations of the whole space programmatically due to internal nature of 

computer graphics mechanism. The problem is to support nonlinear spatial transformations in a manner that is user-

friendly and seamless.    

This is the first part of three papers which describes the author’s noncommercial software “VisuMatica”, its 2D- and 

3D-nonlinear transformational abilities and their didactic potential. As result, the software becomes a powerful tool, 

which helps to discover the unity of mathematics, to visualize and dynamically explore new mathematical environments 

and phenomena. In particular, the paper includes discussion of nonlinear space transformations’ application to studies 

of algebra, complex analysis, vector fields, differential equations and modeling. 

1. Introduction 

Commercial Dynamic Geometry Software
2
 (DGS) provides a user-friendly interface for 

construction of 2D and 3D geometric objects and manipulation with them. Both activities implicitly 

or explicitly widely utilize affine transformations of these objects. Very often different objects 

(figures) transformed differently in the same model. 

One can say with certainty that the smooth and gradual figures’ transformation is the main 

mechanism and the main characteristic of these programs that ultimately led to their common name 

“Dynamic”….  

Is the smooth and gradual figures transformation adequate to the mathematical notion of 

transformation? – Not exactly. Transformations are functions. Therefore, they are one-step actions 

defined as a correspondence. Thus, nobody thinks about quadratic function and its graph as a 

“result” of smooth and gradual “deformation” of straight line (axis x) to the parabola shape. 

Opposite, domain-line becomes range-parabola in a one-step transformation.  

The only correct meaning of DGS as dynamic system is the possibility to manually change and 

deform the studied model. 

As a rule, transformations are not processes (series of actions). They are processes and their 

actions are “changeable” in time in a specific case of dynamical systems we will discuss later in the 

later in the following two papers of this issue of EJMT. 

                                                           
1
See colored figures and animations: https://sites.google.com/site/nonlinearspacetransformations/ 

2
Cabri® II Plus, Cabri® 3D, The Geometer's Sketchpad®, Cinderella etc.  

VisuMatica provides dynamic processing, but the geometry subjects do not limit it. It supports deep studies 

of different mathematical courses and subjects, in particular, the one, discussed here.  

mailto:nodelman@hit.ac.il
https://sites.google.com/site/nonlinearspacetransformations/
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2. Nonlinear transformations 

In “the "real" world problems and issues on the frontiers of modern scientific, technological, 

economic, and social research are often nonlinear in nature. In this nonlinear world, many of the 

mathematical concepts and tools learned and applied in traditional undergraduate, and even 

graduate, science courses are simply inadequate and new mathematical tools must be introduced.” 

[4]. 

In general, the demarcation line between the world of linear and nonlinear phenomena based on the 

following fact:  at the same increment of the independent variable, a nonlinear function responds 

differently depending on what value given an increment, while linear function responds identically. 

A fundamental property of nonlinear functions is the almost complete indifference to changes of 

some values of the independent variables and increased sensitivity to changes of other values of the 

independent variables. 

Nonlinear phenomena described by nonlinear mappings or nonlinear differential equations. Not 

formally, we classify nonlinear spatial transformations (NLST) supported by VisuMatica by the:  

 Space dimension (1D, 2D, 3D); 

 Underlying computational domain (R, C); 

 Transforming action (One-Step, Continuous, and Discrete) 

 

Table 1 illustrates this arrangement by some examples (in black) and suitable notions. 

Visualization of spatial transformation is radically different from visualization of figure 

transformation. In the case of transformation of figure both the figure and its image are located in 

the same domain and can be shown and explored there, while space transformation “changes” the 

space itself and therefore assumes simultaneous presentation of both spaces – domain and range.  

As a result, the regular Cartesian way becomes unusable in case of more than one-dimensional 

domain
3
. 

 

VisuMatica solves this problem by presenting the Domain and Range in two separate 

“synchronized” views.    

What are the students’ mental activities while studying NLST, which the software has to help to 

interiorize? Mainly, they are the same as in case of any other transformations: NLST, being 

functions, require consolidation of the following two complementary actions: 

 Finding image of an element or a subset of the Domain, 

 Finding preimage of an element or a subset of the Range  

 

Although these activities are the most important and their assimilation includes inter alia mastering 

mapping, fixed point and root finding etc. educational software has to support deeper and wider 

exploration of specific and common features and behavior of the studied NLST. 

 

                                                           
3
Cartesian coordinate system allows showing f: RR functions by duplicating space dimensions: x-axis 

presents the function’s Domain and y-axis – its Range. In this manner, for visualizing 2D or 3D space 

transformation one needs 2x2=4 or 3x3=9 dimensions.   



The Electronic Journal of Mathematics and Technology, Volume 9, Number 1, ISSN 1933-2823 

3 

 

The following case studies present the VisuMatica’s support of these pedagogical tasks. We 

selected these simple and popular examples to emphasize the strength of educational software as a 

tool for deep and wide exploration of the studied subject that allows students to discover new and 

surprising features “everywhere”, even in a “boring” and/or well-known math. 

 

 

Table 1 

3. One-step NLST 

3.1. 1D mapping  

In this simplest and easiest case, it seems that nothing special should be done in addition to regular 

math studies at secondary and high school. Students have been studied graphs of linear and 

nonlinear, e.g. quadratic, functions. They made a lot of exercises of finding function values f(a) and 

roots of equations f(x) = b.  The mentioned activities of finding image and preimage of 

transformation already consolidated.   

Students are familiar with the term “linear” and notions of “linear function”, “linear dependence” 

and manage them acceptably. All the rest of math world automatically relates in their opinion to 

something “nonlinear”, as its counterexamples. 

 

 

Figure 1 



The Electronic Journal of Mathematics and Technology, Volume 9, Number 1, ISSN 1933-2823 

4 

 

However, the “nonlinearity” is not just antonym of “linearity”. Their qualitative difference, its 

mathematical sense should be explicitly emphasized. It can be done by means of a model, that 

shows graphs of a general linear function y = ax + b and a dependent, difference function y = f1(x + 

d) – f1(x).
 4

  

Playing with the values of parameters (Fig.1) students discover the fact the model was intended for: 

the red line – graph of function y = f1(x + d) – f1(x) - always remains parallel to the x-axis. For 

every linear function the difference f1(x + d) – f1(x) does not depend on the value of independent 

variable x!  

The analytic prove of this visually discovered feature:  

 

f1(x + d) – f1(x) = (a(x + d) + b) – (ax + b) = ad 

 

brings them also to clear understanding of its value as a product ad and the already revealed 

independence of the difference on b.  

Now we proceed to observation of the difference function’s behavior in case of nonlinear f1(x). 

Students are encouraged to override f1(x).  Replacing f1(x) to y = ax
2
 +bx + c by pressing the 

“redefine” button while keeping the f2(x) unchanged, they get the model, shown in Fig.2. 

After completion of the following assignment   

- Does the difference (red graph) depend on the value of x?  

- How it depends on the parameters? 

- When it becomes constant? 

- Is it still a quadratic function?  

- Verify your conclusions analytically.   

students are asked to override f1(x) once more, with not a polynomial, say, y = a/x, and to complete 

similar tasks.  

Thus, they become familiar with the difference between “linear” and “nonlinear” functions not only 

by the externally visual difference of their graphs, being straight and none straight lines; but also 

with much deeper exclusive linearity feature of independence of the f(x + d) – f(x) on the value of 

its argument. 

                                                           
4
VisuMatica supports this notation. Students prompted on it by the Legend (see the indexed expressions “f1”, 

“f2” in the upper-left corner of Fig.1).  

VisuMatica provides a common simple way to add mathematical objects (explicit and implicit functions, 

equations (including differential equations), inequalities, vector fields etc.): 

- Select the proper real/complex names of variables (Fig.1, red arrows). 

- Select the color from a palette (Fig.1, blue arrow). 

- Type the object’s definition (expression) in the Main edit box (Fig.1, green arrow). 

- Press “Enter” key on the “add” button (Fig.1, black arrow). 

In order to redefine an existing object: 

- Select it by clicking on its icon in the Legend (selected objects become red colored). 

- Change correspondingly its variables’ names, color, and expression. 

- Press the “redefine” button (Fig.1, black arrow). 

To remove an object, just select it by clicking on its icon in the Legend, and press the “remove” button 

(Fig.1, black arrow). 



The Electronic Journal of Mathematics and Technology, Volume 9, Number 1, ISSN 1933-2823 

5 

 

 

Figure 2 

Going further, we can change a little bit the function y = f1(x + d) – f1(x) of absolute difference to 

the relative one y
d

xfdxf )()(
 11 
 . With proper leading questions and concentration of students’ 

attention to the case of small d value, the exploration of the model may serve good propaedeutic to 

the fundamental notion of “function derivative”.  

3.2. 2D mapping  

 

Real plane  

Students meet the linear case of space mapping in secondary and high school. They study this 

concept deeper in courses of linear algebra and analytical geometry, but often with insufficient 

functional interpretation. 

The elementary math explanation of 2D mapping can be done and fruitful already in connection 

with the very first nonlinear subject of quadratic equation [6].  

The Viète theorem, studied at school, presents the link between roots x1, x2 of the monic quadratic 

equation x
2
 + bx + c = 0 and its coefficients b, c. The root-to-coefficient conversion V: (x1, x2)  (b, c) 

or V: (x1, x2)  (- (x1 + x2), x1 x2) delivers an example of 2D mapping.  Let us observe its model 

(Fig.3) and exploration very shortly (for detailed analysis of this map and its sequel see [6]).  

VisuMatica presents the map in two separated views. The left one shows the Domain: the space of 

roots. Its coordinate axes are x1 and x2. The right view shows the Range: the space of coefficients. 

Its coordinate axes are b and c. Color-coding of points in the range reflects the color-coding of their 

preimages in the domain. The color-coding of maps in VisuMatica is subtle because the maps are 

not 1-to-1 in general. As a result, points of different color in the domain that share the same image 

compete in imposing their colors on the image point. The application of a mapping to an object in 

the Domain view appears interactively in the Range view. The mouse pointer interpreted by 

VisuMatica as a point in the view.  
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Figure 3 

The moving mouse in Domain gets its automatic image in the Range view. Thus, Fig.3 shows 

mouse pointer located at (2, 0.5) and its image (the small red circle in the Range view) located there 

at (-2.5, 1).
5
 The correspondence also explicitly presented on the VisuMatica’s Status Bar (its 

fragment shown in the bottom-right corner of Fig.3).  

VisuMatica automatically shows preimage/s of the point of Range that lies under moving mouse 

pointer. The meaning of this fact is very impressive in the students’ sight: it automatically solves 

every possible quadratic equation, each point of the Range space presents.
 
Just locate the mouse 

pointer at the colored point in Range view, whose coordinates are coefficients of the expression, 

and you immediately get solution as a preimage point/s in Domain - remains only to interpret 

its/their coordinates as x1 and x2.  

The simple observation of the model immediately arise many questions. Clearly, the V map hits not 

all points from the coefficient-space. For instance, the point (0, 4) apparently has no preimage in the 

root space. Why? The boundary between image points and non-image points seems to be a parabola 

whose vertex is at (0, 0). Is it really a parabola? What quadratic polynomial is represented by this 

point?  

Students discover interesting “behavior” of preimages of the mouse while moving it in the Range 

view. - There are two points-preimages symmetric with respect to bisector of the 1
st
 and 3

rd
 

quadrant, if mouse pointer located at an internal point of the colored area. These two points 

coincide, when mouse located at the border of this area. They disappear when mouse pointer enters 

the white area.   

Mouse pointer in Fig.4 located at (2,-3) and its preimages are (-3, 1) and (1, -3). Students easily explain this 

fact and are able to generalize the explanation.  Introduction of bisector x2 = x1 confirms correctness of 

the observation. The image of bisector is the boundary of colored area in the Range view. With 

reference to the origin of this curve, students are hinted to replace equal x1 and x2 in the Range 

expression (- (x1 + x2), x1 x2) with x. …Yes, it is a parabola and they got its equation! 

 

 

                                                           
5
Points closed around the mouse pointer and its image have the same color tint   
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Figure 4 

VisuMatica provides a rich set of tools for featuring and exploration of 2D mapping by means of 

mapping dialog box (Fig.5 shows its tabbed panels) in both cases of R
2
 and C Domain. The 

following study of transformation V shows a few examples of educational potential of these tools.  

 

 

Figure 5 

 

To verify the nonlinearity of our mapping we select the “grid colored” mapping style (see the blue 

arrow in Fig.5). It brings up the view, shown in Fig.6. Surprisingly, the images of horizontal and 

vertical grid lines also are straight lines.  
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Figure 6 

It is rather difficult to link the definite grid line with its image and get some deeper insight about 

their dependence, although both of them have the same color.  Furthermore, it is desirable to check 

if our conclusion about images of the grid lines remains correct for each horizontal and vertical line 

in Domain. To make it clear one can set the mapping style as “empty” and enable option “show 

mouse attributes” with zeroed “circle radius” (see the red arrows in Fig.5).  

  

Figure 7 

Moving mouse pointer in the Domain view brings up an enlightening dynamic scene. Our model 

shows horizontal and vertical lines, passing through the point of mouse location, and their images in 

Range view - straight lines, that intersect at the mouse image and are tangent to parabolic border. 

Fig.7 presents the case of mouse, positioned at (2, 3). Clearly, its image located at (1, -6). But why 

the slopes’ values are opposite to the roots 2 and -3? Why the image lines are tangent to parabola? 

If so, what will happen while relocating mouse along the yellow line, alone the purple one? 

We can answer the last question by application of the “simulation” tool that simulates the mouse 

movement in exact manner instead on manual repositioning (Fig.5, green arrows).    

Nevertheless, is the mapping linear? Although we have an example of transforming straight line x1 

= x2 to the parabola-shaped curve, we will check the suspicion that V is nonlinear by the feature of 

non-keeping the difference of the V-values.  



The Electronic Journal of Mathematics and Technology, Volume 9, Number 1, ISSN 1933-2823 

9 

 

  

Figure 8 

 

The model consists of a segment-arrow, that connects a free point P with a point, defined as Q( P.x 

+ a, P.y + b ). Parameters a and b define the difference (a,b) of independent Domain's variable (the 

segment).  Moving manually point P in the Domain view we convict, that the difference of the 

points' images changes drastically: the image of an arrow not obviously remains a segment, it 

changes (length and direction). Thus, Fig.8 presents two different positions of the dragged segment 

(colored in red and green), and their correspondent images. It “proves” the nonlinearity of V 

mapping.    

Observe Fig.4 and Fig.6 once more. Why the color palette of the Range view in Fig.4 does not 

include the whole spectrum of Domain? Convince that there is 1-to-1 correspondence of the palette 

under bisector and the whole Range area. Counting the lines in Fig.6 brings another surprise: half of 

lines disappeared under the mapping. Why? 

 
Figure 9 

One can get some additional visual insight on what happens in V mapping by selection of 3D view 

with Riemann function of Domain's argument (see [6] for details) from the mapping dialog box (the 

magenta arrows in Fig.5). The surface is "synchronized" with mouse and keyboard activities and 

emphasizes the overlapping effect of colors and lines (Fig.9 shows different surface views; the 

second one is a self-explanatory top view).     
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The last experiment in the presented series refers to the only example of deforming bisector. Is it 

really an exclusive case? The simplest way to inspect the problem is to define a line by two free 

points in Domain. Now remains to move manually these points or the whole line
6
 while paying 

attention to the changing line's image. These activities lead students to few important conclusions: 

 The line images "mostly" are looking as parabolas.  

 The image becomes straight line not only in case of horizontal or vertical orientation of the 

original line, but also in case of this line is parallel to the bisector of 2
nd

 and 4
th

 quadrant. 

 The shape of image remains unchanged while dragging the initial line.   

 Each one of the images has and only one common point with the parabolic boundary of the 

colored area, definitely, except of the bisector’s image. 

The following experiment will help students to understand an analytic explanation of these facts.  

We have discovered two special directions of bisectors and the constancy of image's shape while 

dragging the line-preimage. Fortunately, VisuMatica includes a special moving "zone" tool (see 

orange arrows in Fig.5) for 2D mapping exploration that fits father study
7
. Let us orient zone along 

the suspicious direction of 45 and drag it (Fig.10).     

 

Figure 10 

One can notice that the images of grid segments, that are parallel to the bisector of 2
nd

 and 4
th

 

quadrant, are distributed equidistantly (being vertical segments), and their distance remains 

unchanged. Whereas, the images of grid segments, that are parallel to the bisector of 1
nd

 and 3
th

 

quadrant, all congruent to the blue fragment (drawn by hand) and can be considered as result of its 

translation in a vertical direction. Accordingly, all the vertical segments in the image have the same 

length.  

Taking into account the Cavalieri principle and all these notices we conclude that the area of the 

zone’s image remains the same while moving zone in parallel to the bisector of 1
nd

 and 3
th

 quadrant. 

One can enforce this movement by definition of the zone location coordinates parametrically, say 

                                                           
6
 VisuMatica keeps the slope of a manually dragged line unchanged.     

7
 The idea of mapping examination by observation of the image of some area of the Domain space has a long 

history in mathematics science, especially in Complex analysis, and education.  
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(a, a + b) – see orange arrows of “Zone” panel in Fig.5 - and changing a value by slider or by 

clicking the “animation” button . 

Fig.11.a presents a combination of images of zone, moving in parallel to bisector.  

In general, we have gained knowledge on an important feature of V mapping: it is conservative for 

any figure moving in parallel to the bisector (Fig.11.b presents combination of images of a triangle, 

which moves in parallel to bisector).   

 
a)                                                                          b) 

Figure 11 

 

Complex plane 

 

The theory of functions of complex variable deals mainly with NLST of f : C  C. All the elements 

of VisuMatica’s mapping resources are applicable in complex case. 

Let’s start study the complex Domain from creating a very simple tool for checking linearity by 

analogy with the f: R
2
  R

2
 case. There are at least three options to construct such tool.  

First way: we define two complex numbers c1 and c2, say c1:= a + b*i, c2:= c + d*i and the function 

as w = c1*z + c2. It remains to add a segment-arrow to our model in the same manner as in the V-

mapping case, and the tool is ready. Dragging the P point with the mouse brings up an opposite 

result to the one shown in Fig.8. The image of arrow remains the same. After any change of 

parameters a, b, c, d the dragging does not change its direction and length. So, our transformation of 

complex plane w = c1*z + c2 is linear. Replacing the expression by some other, say w = z
2
, causes 

instability of the dragged arrow’s image.  

The second way is just to enable the “show mouse neighborhood” option (see “Mapping style full 

AREA” panel in Fig.5). Initially, it is intended to check the conformality of complex mapping, but 

can serve our needs too. 

 

A map is conformal if it preserves angles. VisuMatica visualizes the feature of conformality by a star 

in the Domain view and its “image”
 8 

in the Range view. The original star has a center at mouse 

                                                           
8
 The star-image is symbolic: its segments are always shown as linear. They visualize exclusively direction 

and the ratio of scale in this direction in the neighborhood of f(z), when mouse points to z and not the result 

of mapping the star-tool as any other geometric figure. 
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pointer's location and twelve equal segments colored differently. Angles between adjacent segments 

are equal. The starting red segment directed to the right and ends with an arrow. Mapping is 

conformal if and only if the “image” of the star is also a star with equal angles between adjacent 

segments. The image star may be differently rotated and equally scaled (optionally) - the rotation 

angle and the scaling ratio can be different for different mouse pointer’s locations. 

     

The map is linear if and only if the shape of image of the star remains the same, just moves in The 

Range view, no matter of mouse pointer’s position in Domain (proof of this statement is a 

challenging task). Actually, its shape will be a constantly scaled and/or rotated original star in case 

of linear mapping (Fig.12 shows a star around mouse pointer and its image in the Range, located at 

the barbel’s tip of the mapped butterfly for w = c1*z + c2
9
). 

 

 

Figure 12 

The third way is the simplest one. It made up of adding a new mapping as w = f1(z + c3) – f1(z), 

where c3 is some complex number, and observing its behavior with different values of c3. 

The result of mapping with linear f(z) will be an empty Range view with a single small red point – 

the common image of the whole complex Domain’s plane (Fig.13) does not matter where the 

mouse pointer is located. Explanation of this fact as “the difference w is the same for every z” and 

as an “IFF condition that the f(z) mapping is linear" becomes a fruitful task. This interpretation 

becomes “more visible” if we will enable an additional, common Domain + Range view
10

 and 

permit the option of common view as vector field in the “Mapping style” panel (Fig.5). The 

resulting picture (Fig.13 bottom-left) shows regularly distributed preimages connected with their 

images by vectors. These vectors have a common end IFF the mapping is linear. Bottom-right area 

of Fig.13 shows the common view with enabled option of presenting vector field as “normalized” – 

all the arrows directed to the same point. Naturally, the common view displays the link between z 

mouse points to and its image emphasized by a dotted black line. 

                                                           
9
 It can be an interesting visual study of dependence of the angle, scaling ratio and the origin’s image 

location on values of parameters a, b, c, d.     

10
 This - sometimes useful in transformation’s studies view - is, mainly, only one view of DGS.  
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As an example of how software helps in making a complicated subject clear, we will consider 

Zhukovsky
11

 transformation function
z

zz
1

 . He had studied this subject while looking for the 

ideal shape of the aerodynamic profile. 

 

Our model includes the moving zone as set of concentric colored circles (in “Zone” panel Fig.5 was 

selected the zone definition “by Modulus-Argument”) properly located in the Domain view. Its 

image (Fig.14) has two remarkable features: the outer red circle got the airfoil shape and images of 

the rest of circles “cover” the Range space but mostly concentrated very close under the airfoils 

bottom. Dynamically moving zone with mouse, students find out that these features are not “stable” 

and a similar picture appears very seldom.    

  

Figure 13 

 

                                                           
11

 Zhukovsky Nikolai Egorovich (1847 - 1921) was a Russian mathematician and a founding father of 

modern aero- and hydrodynamics.  

http://en.wikipedia.org/wiki/Aerodynamics
http://en.wikipedia.org/wiki/Hydrodynamics
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Figure 14 

How Zhukovsky could imagine more than a century ago such features that are deeply hidden even 

for computerized visualization? We will focus on the first feature: the airfoil shape of the circle’s 

image. Foremost, let us look at the map itself. The mapping Range (Fig.15) includes two “strange” 

points - complex numbers: c1 = -2 + 0i and c2 = 2 + 0i. They are really “special”: by moving mouse 

pointer in the Range view we can see, that the pointed complex numbers have two preimages. 

However, when we approach these two points the two preimages become closer and seem to 

coincide if the mouse points “exactly” to c1 or c2. Keeping in mind that preimages of any complex 

number c are roots of equation f(z) = c students solve equations 
ic

z
z 

1
 and validate their 

observation that the coincided points in the Domain are r1 = -1 + 0i and r2 = 1 + 0i. What is so 

special in values of r1 and r2? – They are critical points of the function and the function is singular 

at these points. Really, a point z0 is critical if the derivative f ´(z0) = 0; and it is easy to check that r1, 

r2 are roots of the equation  f ´(z) = 0.  

 

Figure 15 

The study of singularity focuses on the function’s behavior in the closed neighborhood of critical 

point. Mainly, on the study of a simple closed (also called Jordan) curve around the point and the 
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curve’s image. We will use a circle in this role. Specifically, we will utilize the familiar “show 

mouse attributes” feature; but redefine it by way of disabling “lines” in the “mouse” pane of the 

“General” tabbed panel of the Mapping dialog box and setting the “radius” equal to the a 

parameter. Thus we get a circle of radius a, with center at the position of moving mouse pointer. 

By assigning different values to a parameter and moving the mouse pointer close to r1 and r2 (and 

not only) one can take note of two different types of the circle’s image:  

 A closed curve with one self-intersection, if one and only one of the critical points outlined by 

the circle (Fig.16 a, b). The curve becomes a lying “8” eight-shaped when the circle has 

points on both sides of the imaginary axis (Fig.16 b).   

 A simple closed curve otherwise (Fig.16 (c) – both critical points enclosed with the circle, (d) 

– both critical points lie outside the circle).   

 
Figure 16 

Two columns on the right present the Riemann surface with circle image on it. We added the 

column with semitransparent surface to help reading curve’s behavior. Vertical projection of the 

curve onto the cube’s bottom is always the circle’s image in the Range view. One can discover a lot 

about the behavior of the image-curve from these 3D pictures. However, as always in 3D – you 

have to rotate the cube with the Riemann surface to perceive its behavior and on this basis the cause 

of curve-image behavior in each of the four cases.  

We will avoid detailed discussion: comparison of the circle’s images is the Range view is sufficient 

to grasp the idea as follows: 

On the way from one type of image to another, while moving the mouse pointer, we could 

see the moment of the image becoming airfoil shaped. Insight comes on the “common 
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boundary” of mentioned two cases: the transition happens when the critical point lies on 

circumference. Here comes the cusp we were looking for! 

To verify the correctness of our assumption we will enforce the mouse pointer to move around 

critical point on a distance of radius a, that is along a circle of radius a with a center in the critical 

point. The “simulation” tool of the Mapping dialog fits our intent. 

 

Figure 17 

Fig.17 presents simulation dialog’s settings for the enforced movement of mouse pointer with circle 

of radius a = 1.5 around r2 = 1 + 0i and four in-between results.  

Common to all these states is the fact that curve starts and ends on the two-leveled “point” that 

corresponds to r2 and lies on both layers. It bends around the second critical point (case b, c) 

producing airfoil shape or passes through this point and degenerates to an arc: projections of both 

parts of the curve, which lie on different levels of the surface, coincide (case a, d).  

Lastly, we must say a word about visualization of multivalued functions’ mapping. Being a problem 

for professional computer algebra systems, e.g. Mathematica (Wolfram Research) [10] it often has 
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an adequate presentation in VisuMatica (see details in [7]). Fig.18 presents Mathematica and 

VisuMatica views of zzf )( . 

  

Figure 18 

3.3. 3D mapping  

The specifics of 3D transformations lie in impossibility to visualize the “whole” space or its sub 

volume as a “filled continuum” like we did in case of 2D by coloring or texturing the “whole” space 

– Domain view. The reasonable way to deal with the problem is to put some objects (surfaces, 

curves, polyhedrons and other 3D and 2D figures) into the Domain and observe their images. 

Relocating, in particular - dragging objects in Domain view and watching the changes of their 

images helps understand the mechanism of 3D transformation.    

VisuMatica manages transformations of the whole space in 3D case, including NLST, in contrast to 

transformations of isolated object(s)
12

, as it is typical in DGS. VisuMatica identifies definition of 

the entered transform and expresses it by two icons: dimensions (2D/3D) and linearity 

(NLST/linear). Fig.19 shows the “TRANSFORMATION” panel of “Geometry” dialog with 

definition of a 3D NLST, where xxg sin3:)(  . 

 

 

Figure 19 

                                                           
12

 VisuMatica supports these transformations too.  
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Fig.20 (a, b) shows transformation of a parabolic hyperboloid and a sphere (in two different 

locations) in separated Domain-Range view. Fig.20 c) presents cube and sphere (before and after 

dragging) with their images in a common view under  zzf
xz

yf
yz

xf  )(,
10

)(,
10

)(  transform. 

 

It is worth to note a simple way of giving dynamics and animations to one-step transformations, by 

defining them with parameters. Of course, in that case, we will deal with families, rather than one 

transformation, but the way of constructing and processing such animations may be educationally 

valuable. 

 

Consider the classical task of deforming a square to a torus. Let the square be perpendicular to the 

y-axe, axis-aligned with side equal to 20; and the torus with center at the origin and the major radius 

r in XOY plane has a minor radius rr. Their parametric definitions look as follows:  


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,where ]10,10[, st  

It is easy to define morphing of the square to torus by linear homotopy 















torussquare

torussquare
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ayyaay
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)1()(

)1()(
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, with ]1,0[a .                                                               (1) 

 

  
Figure 20 
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The surface, defined in (1) parametrically and dependent on a parameter, becomes a square when a 

= 0, a torus, when a=1 and looks as in-betweens for 0 < a <1. Implemented in VisuMatica it 

produces a nice animation. However, we are looking for whole space, not only surface 

transformation. In order to get its definition we replace t to x and s to z in formulas of the square 

and torus definition, apply them to (1) and enter the resulting strings as fx, fy, fz into the 

“TRANSFORMATION” panel. From now, the transformation is active. We define our square 

parametrically as (t, r, s) with ]10,10[, st , and play with value of a parameter. It turns! -It does 

what it made from, but how the transformation behaves towards other objects? After adding a 

sphere, we discover a not expected result: its image is a projection of a circular disk onto the image 

of the square for each value of a parameter. The volume of the sphere’s image always equals to 

zero. …Aha! We have lost the y coordinate. It was not necessary because of special orientation of 

our square (y is constant). …Small fix: add y - r to fy expression - it equals to zero concerning the 

square, whose y = r by definition, but allows breathing to images of other objects. Their volume 

becomes positive.  

 
Figure 21 

Fig.21 shows our scene with different values of a (the square defined with a spectrum of colors and 

an image of Dumbo-Disney’s baby elephant to ease seeing the correspondence).  

One can express any space transformation as 
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


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= (x, y, z) + v(x, y, z), where v(x, y, z) 
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
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and thus to clarify it geometrically as addition of vector v to point P(x, y, z):                     f: (x, y, z) 

 (x, y, z) + v(x, y, z).  
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Figure 22 

 

Considering vector v as a function v: (x, y, z) 










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

)),,((

)),,((

)),,((

zzyxf

yzyxf

xzyxf

z

y

x

, defined on the whole space R
3
, 

we deal with a vector field. It gives an idea to take advantage of the VisuMatica’s vector fields 

supporting mechanism in our exploration. The notion of vector field is crucial for describing 

differential equations and dynamical systems. Vectors there interpreted as velocity. Mainly, only 

their slope is taken into account while the magnitude is ignored or scaled to suit the visualization 

needs. So, considering this circumstance, the interface must be explicitly configured on proper 

vectors’ portray. (Fig.22 shows interpretation of the correspondence in 2D and 3D nonlinear 

mapping by means of vector fields).  

The following two papers present instructive capabilities of VisuMatica in studies of continuous- 

and discrete-time dynamical systems. With mentioned settings of vector’s drawing, their 

appropriate parts can be read as an extension of current 3D mapping analysis. 

4. Conclusions 

This paper demonstrates a new way in software support of teaching and learning mathematics, in 

particular, nonlinear space transformations. 

Unlike applets and specific models in CAS and DG systems, here creation and setting mechanism 

have a generic nature. This approach allows emphasize and exploit the multidisciplinary and 

interdisciplinary links, the unity of mathematics, and thus to ease study of different mathematical 

subjects. 

Distinguishing features of VisuMatica: 

• Absence of special syntax for definition and configuration of mathematical objects, 

• Intensive use of the powerful potential of user interface, 

• Attainment of dynamicity by manual manipulations with mouse and sliders, 

• Information visualization by colored coding 

help students to explore complicated mathematical notions and get insight about their properties and 

relationships. 
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